Forklaring av ubestemt integral og trigonometrisk integral

ubestemt integral

Ubestemt integral eller også kjent som anti-derivat er en form for integrasjonsoperasjon som gir en ny funksjon

Integral spiller en veldig viktig rolle i matematikk. Teorien kan bestemme arealet under kurven til en funksjon.

Integral er nyttig for en kontinuerlig tilleggsgrense til en kontinuerlig funksjon. Integral er anti-derivat. Så hvis f er en kontinuerlig funksjon, så er det integrerte produktet av funksjonen f notert F.

Intergrale typer basert på visse funksjonsgrenser er ikke sikre. Følgende er en diskusjon for typer integraler med ubestemte grenser.

Ubestemt integral

En ubestemt integral eller også kjent som anti-derivat eller anti-diversifisering er en form for integrasjonsoperasjon som produserer en ny funksjon.

Tenk på følgende ligning.

med C en konstant. Den ubestemte integrerte formelen er som følger

ubestemt integral

eller lik

med

  • a (x) ^ n = Ligningsfunksjon
  • a = konstant
  • x = variabel
  • n = Kraften til ligningsfunksjonen
  • C = konstant

Resultatet av denne ubestemte integralen er en funksjon som er en ny funksjon som ikke har en bestemt eller bestemt verdi fordi det fortsatt er variabler i den nye funksjonen.


For å forstå begrepet ubestemte integraler bedre, kan du vurdere eksemplene på spørsmålene nedenfor.

Basert på dette eksemplet kan en integrert operasjon formuleres, nemlig

ubestemt integral

Trigonometrisk integrering

Integriteten til en funksjon er ikke nødvendigvis en konstant, lineær eller polynom. I denne intergale løsningen involverer det ofte trigonometriske elementer.

I den trigonomiske funksjonen gjelder også definisjonene av integraler som er ordnet i følgende tabell.

ubestemt integral

Du kan bruke ligningene i tabellen over for å løse det integrerte problemet med trigonometri.

For å forstå trigonometriske integraler bedre kan du forstå følgende eksempler

ubestemt integral

Det var forklaringen på ubestemte integraler i vanlige og spesielle trigonometriske funksjoner. Forhåpentligvis kan det studeres godt.

Les også: Anstendighetens normer: Definisjon, mål, sanksjoner og eksempler [FULL]

For å bedre forstå konseptet med denne integralen, kan du øve deg på å gjøre praksisproblemer. Hvis det er noe du vil spørre, skriv det ned i kommentarfeltet.

Siste innlegg